• <rp id="2pqac"></rp>

  • <tbody id="2pqac"></tbody>
  • <em id="2pqac"><ruby id="2pqac"></ruby></em>
      <em id="2pqac"></em>
      <tbody id="2pqac"></tbody>

    1. <progress id="2pqac"><big id="2pqac"></big></progress>

      <button id="2pqac"></button>
      <dd id="2pqac"><noscript id="2pqac"></noscript></dd>
    2. <progress id="2pqac"><track id="2pqac"></track></progress>
    3. <button id="2pqac"></button>
      • 021-61310576
      您的位置: 首页 > 新闻中心 > 阀门知识

      进口 调节阀噪声 处理

      作者:进口阀门 日期:2020-04-05 点击:499

      1、气体动力噪声

       气体动力噪声是气体或蒸汽流过节流孔而产生的。工业上遇到的调节阀的噪声,大多数是气体动力噪声。气体和蒸汽都是可压缩流体,一般来说,可压缩流体的流速都要高于不可压缩流体的流速。当气体流速比声音速度低时,噪音是因为强烈的扰流产生的;当气体的速度大于声速时,流体中产生冲击波,所以噪声剧增。把各种噪声加以比较,可压缩流体流经调节阀产生的噪音是最严重的。

      2、液体动力噪声

      液体动力噪声是由于液体流过调节阀的节流孔而产生的。调节阀结构多种多样,典型的节流形式如图1所示。各种节流口的结构形式尽管不同,但都对液体产生节流作用。当液体通过节流口时,由于节流口面积的急剧变化,流通面积缩小,流速升高,压力下降,因而容易产生阻塞流,产生闪蒸和空化作用,这些情况都是诱发噪声的原因。

      1.jpg

      阀门节流口的前后压差不大时,节流口的噪声是极小的,流动的声音不大,因此,不必考虑噪声的问题。如果压差较大,流经调节阀的流体开始出现了闪蒸情况,流动的流体变成有气泡存在的气、液两相的混合体,两相流体的减速和膨胀作用自然形成了噪声。而且,由于电动调节阀口附近截流断面的急剧变化,在高速喷流状态下引起流动速度的不均匀,从而产生了一种旋涡脱离声。

      当空化作用产生时,气泡破裂,强大的能量除产生破坏力外,还发出噪声,这种噪声的频率有时高达10000Hz。气泡越多、越大,噪声越严重。

      在选择调节阀时,为了避免产生液体动力噪声,关键在于找到开始产生空化作用时的阀门压降ΔPc,确保阀门压降小于ΔPc。为此,引入一个起始空化系数KC的概念。

      2.jpg

      KC的数值由实验得到,它也可以根据液体的压力系数FL来确定,图示出了FLKC的关系。

      3.jpg

      3、旋涡脱离噪声

      在各种噪声类型中,有一种旋涡脱离噪声,可压缩流体在流过物体表面时,极容易产生这种噪声。当流体质点流到一个非流线型的圆柱体的前缘时,流体受阻,压力就从自由流动时的压力升高到另一种压力,这是因为流体动能的转换。流体绕过圆柱体,形成附面层后,继续流动。在雷诺数Re不同时,调节阀流体流动的情况是不同的。

      从图3可以看出,当Re5时,流体并不脱离圆柱体图(a);当5Re40时,尾流中紧贴圆柱体后面形成一对稳定的旋涡图(b);当40Re150时时,对称旋涡破裂,在尾流中出现稳定的、非对称的、排列规则的、旋转方向相反的旋涡列,这些旋涡周期性地脱离圆柱体(c);当Re150时,旋涡列已不再稳定;Re300时,整个尾流区已变成湍流状态(d)。

      4.jpg

      不可压缩流体的雷诺数Re一般都很大,在这种情况下,附面层不能包围住圆柱体的背面,而是从圆柱体表面的两侧脱开,形成两个在流动中向尾部延伸的剪切层。这两个剪切层形成尾流的边界,因为调节阀内层相对于最外层移动慢得多,于是,这些自由剪切层就有卷成不连续打旋的旋涡的倾向,尾流中形成了旋涡流,旋涡流和圆柱体相互作用,诱发振动。当旋涡交替地从圆柱体两侧脱落时,也就激发了圆柱体周期性的脉动力。这种力使有弹性的圆柱体产生振动并发出风鸣音调。风吹过电线时,就可以听到了风鸣声,这就是旋涡脱离现象。而当旋涡脱离的频率与圆柱体的固有频率接近或相同时,振动加大,共振发生,噪声增大。当Re3×105时,旋涡的脱离是十分凌乱的,而且形成一个很宽的频带。

      如果零件是非圆形截面,上述的现象和结论也同样适用。

      总之,可压缩流体流经气动调节阀时,在节流截面最小处可能达到或超过声音速度,这就形成冲击波、喷射流、旋涡流等凌乱的流体,这种流体在节流孔的下游转换成热能,同时产生气体动力噪声,沿着下游管道,传送到各处,严重时将因振动过大而破坏管道系统。

      相关文章:

      选型气动调节阀从六大方面http://www.assassingrl.com/newsdetail_1858330.html

      调节阀内部结构工作原理http://www.assassingrl.com/newsdetail_923122.html

      调节阀内部阀芯阀座密封材质选择http://www.assassingrl.com/newsdetail_944552.html

      调节阀选型常见的问题http://www.assassingrl.com/newsdetail_1524123.html

      气动薄膜调节阀结构及工作原理http://www.assassingrl.com/newsdetail_1531768.html

      气动膜片式调节阀工作原理及常见故障处理http://www.assassingrl.com/newsdetail_1524130.html

      气动调节阀工作原理-动态图http://www.assassingrl.com/newsdetail_578454.html

      气动调节阀故障维修排除http://www.assassingrl.com/newsdetail_730769.html

      气动不锈钢调节阀-高温波纹管http://www.assassingrl.com/newsdetail_984032.html

      分享到:

      上一条:进口阀门

      下一条:进口博雷brayS30气动蝶阀 气动执行器 信号反馈器

      快三平台app